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Abstract--This paper presents a two-dimensional, quasi-stationary finite element numerical model to study 
the fluid flow and the heat transfer phenomena which occur during constant travel speed, keyhole plasma 
arc welding of metal plates. A Newton-Raphson iteration procedure was developed in this model to 
accurately identify the solid liquid interface location during welding. The finite element method was 
applied to the study of a typical keyhole welding process of an AISI 304 stainless steel plate. The results 
show that the method can be used to predict the shape of the welding pool as a function of welding 
parameters and that the widths of both the fusion zone and the heat effected zone decrease as the welding 

speed increases while the power required for welding increases with an increase in welding speed. 

INTRODUCTION 

PLASMA arc welding (PAW) is a joining process in 
which a constricting plasma arc is used as the con- 
centrated energy source to melt and then fuse two 
metal pieces together [1, 2]. The plasma arc is a high- 
temperature, partially ionized gas stream produced by 
forcing an inert gas to flow through an electric field. 
This electric field is set up between a tungsten electrode 
(cathode) inside the welding torch and the workpieces 
(anode) to be welded. The arc temperature and ther- 
mal ionization are maintained, by the resistance heat- 
ing effect of  the current flowing through the plasma 
arc. The arc is further columnized by passing it 
through a constricting orifice on its way from the 
welding torch toward the workpiece. In this way, a 
high-temperature (10000-20000 K), high-velocity 
(300 2000 m s ~) plasma arc is generated for metal 
processing [3]. 

As the plasma arc impinges on the area where two 
workpieces are to be joined, it can melt material and 
create a molten liquid pool. Because of  its high vel- 
ocity and the associate momentum,  the arc can pene- 
trate through the molten liquid pool and form a 
hole at the point of  welding usually referred to as a 
'keyhole' .  Moving the welding torch and the associ- 
ated keyhole will cause the flow of the molten metal 
surrounding the keyhole to the rear region where it 
resolidifies to form a weld bead. 

The PAW process has a number of  advantages over 
other arc welding processes such as gas tungsten arc 
welding (GTAW).  Plasma arc welding can be used for 
welding thicker pieces with a single pass, does not 
require preparation of  joints, and therefore can be 
used without filler material. The keyhole mode of  
welding is the primary attribute of  P A W  that makes 
it so attractive. 

Keyholes are also formed in electron beam welding 

(EBW) and laser welding. However,  the mechanism 
of  keyhole formation in these processes is different 
from that in the PAW process. In PAW the keyhole 
is produced and maintained mainly by the pressure of  
the penetrating arc rather than by the pressure of  the 
evaporating workpiece material as in EBW and laser 
welding. Thus, the keyhole appearing in the PAW 
process is much wider than those produced by either 
EBW or laser welding processes and has a circular 
shape [5]. Al though all these keyhole welding pro- 
cesses can generate high quality welds, the PAW pro- 
cess turns out to be more attractive because of  its cost 
effectiveness [6]. 

Plasma arc welding is used extensively for different 
applications such as welding of  missile cases, pipes 
[7], rocket motor  cases [8], advanced high perfor- 
mance ship structures [10], the shuttle rocket booster 
[4, 14] and with different materials such as stainless 
steel [7, 9], nickel, nickel alloys, titanium [2] and 
aluminum alloys [4, 13, 14]. Most  of  the research on 
PAW is of  an experimental nature with the major 
emphasis on attempts to identify optimal values of  
welding current, torch travel speed, plasma gas flow 
rate, arc length [9], torch orifice [12], and plasma 
polarity [9, 13, 14] for a good weld. 

Limited theoretical studies on the thermal and fluid 
mechanics aspects of  the keyhole welding process can 
be found in the open literature. In an earlier work 
this process was modelled as a two-dimensional heat 
conduction problem involving a constantly moving 
point heat source [18]. By assuming that the problem 
is quasi-stationary (with respect to a coordinate sys- 
tem which moves with the heat source) and the 
material properties are invariant with temperature, 
analytical expressions of  the temperature distribution 
in a plane normal to the torch axis were derived. The 
size of  the welding pool was then assessed from the 
location of  the isotherm at the melting temperature. 
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coefficient matrix defined in 
equation (A6) 
keyhole radius [m] 
coefficient matrices defined in 
equation (A6) 
heat capacity of liquid, solid 
[Jkg 1 °C-l ]  
coefficient matrix defined in 
equation (A6) 
temperature mismatch at interfacial 
node i, Ts./- Tm [:)C] 
vector of temperature mismatch 
vectors of surface force at element 
boundary, defined in equation (A6) 
coefficient matrix defined in 
equation (A6) 
surface heat transfer coefficient 
[Win 2°C- ' ]  
heat of fusion [kJ kg t] 
coefficient matrix defined in 
equation (A6) 
Jacobian matrix defined in 
equation (A6) 
thermal conductivity of liquid, solid 
[Wm 1 °C-l ]  
total number of nodes on the solid- 
liquid interface 
coefficient matrix defined in 
equation (A6) 
normal direction 
coefficient matrix defined in 
equation (A6) 
pressure in the liquid region [N m - z ]  

vectors of heat flux across the element 
boundary, defined in equations (A6) 
radial coordinate, defined in Fig. 2 
radial distance between the coordinate 
origin and the interfacial node [m] 

NOMENCLATURE 

R 
Tb 
T, 

Tm 
T~ 

T~ 
U 
U, V 

Ur~ UO 

W 

X 

vector of interfacial nodal distance 
boiling temperature ["C] 
temperature difference between the 
liquid and the ambient ["C] 
melting temperature [°C] 
temperature difference between the solid 
and the ambient [°C] 
ambient temperature [C]  
welding speed [ms ~] 
liquid velocity in x-, y-direction [m s ~] 
liquid velocity in r-, 0-direction [m s ~] 
fusion zone width [m] 
coordinate axis along the welding path, 
defined in Fig. 1 
coordinate axis normal to the welding 
path, defined in Fig. 1 
plate thickness [m]. 

Greek symbols 
0 
# 

P 

6f~l 

3f~2 

angular coordinate, defined in Fig. 2 
liquid viscosity [kg m i s ~] 
material density [kg m - 3] 
interpolation functions used in the finite 
element formulation 
plasma arc-liquid interface 
solid-liquid interface. 

Subscripts 
i, j index of nodes 
1, s liquid, solid. 

Superscripts 
k iteration step index 
T transpose of matrix 
- 1 inverse of matrix. 

Later, this model was modified by Malmuth [19] 
who incorporated the latent heat effect into the 
formulation. 

Klemens [20] derived expressions which relate the 
shape of the molten liquid pool to the welding par- 
ameters by assuming that the keyhole is a vertical 
cylinder with a known inner radius. The flow pattern 
in the liquid pool and the temperature distribution in 
both the solid and liquid regions, however, were not 
solved in his analysis. 

Mazumder and Steen [21] proposed another model 
to study the heat transfer of the laser welding process. 
For calculational purposes, they considered the key- 
hole region as part of the workpiece, but at a fic- 
titiously high temperature (above the boiling tem- 
perature as calculated from the model). Thermal 

energy was then assumed to transfer from this region 
into the liquid pool via heat conduction. The tem- 
perature dependence of the material properties and 
the heat of fusion were neglected. With these sim- 
plifications, the temperature distribution in the work- 
piece was numerically calculated. 

Dowden et al. [22] analytically solved the flow field 
and the temperature distribution in the molten liquid 
surrounding the keyhole during the laser welding pro- 
cess. Since both the keyhole and the solid-liquid inter- 
face were assumed circular in this two-dimensional, 
quasi-stationary analysis, the results are restricted to 
low welding speed conditions. 

Recently, Wei and Giedt [23] reported a numerical 
study of the liquid flow around a cavity produced by 
an electron beam. Assuming a given shape of the 
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solid liquid interface and heat flux conditions on this 
interface they have calculated the thickness of the 
liquid layer around the cavity and the temperature on 
the liquid~zavity interface. A parametric study was 
performed to assess the effects of various welding 
parameters on the liquid metal flow. 

This paper presents a two-dimensional analysis of 
the heat transfer and fluid flow during keyhole plasma 
arc welding. A finite element technique was employed 
to perform the numerical calculations. The study pre- 
sents a new numerical procedure using a Newton- 
Raphson iteration method to accurately identify the 
solid liquid interface location as part of the solution 
to the problem. This novel numerical method was 
applied to the study of the welding process in a plate 
made of AISI 304 stainless steel. The liquid motion in 
the weld pool, the heat transfer in both solid and 
liquid regions and the shape of the weld pool were 
determined as a function of the keyhole diameter and 
the welding velocity. 

ANALYSIS 

Physical model 
Shown in Fig. 1 is a schematic illustration of the 

keyhole PAW process analyzed in this work. The fig- 
ure shows the plasma arc penetrating through the 
keyhole, the liquid metal weld pool surrounding the 
keyhole and the resolidification of the liquid metal in 
the rear region of the weld pool which creates the 
fusion zone. This study is concerned with the heat 
transfer and fluid flow during the steady state stage of 
the plasma welding process, in which the welding 
torch moves with a constant velocity U, and the fluid 
flow velocities and temperature distributions have 
reached steady state with respect to a coordinate sys- 
tem moving with the plasma arc. Therefore, the pro- 
cess can be modelled as a quasi-stationary problem in 
a frame of reference moving with the plasma arc. 

Several simplifying assumptions were made to 
facilitate a solution to this problem. The sim- 
plifications were imposed primarily by the limited 
information in the technical literature on the heat 
transfer and fluid flow from plasma jets in the keyhole 
welding mode. 

(1) The temperature variation in the metal plate in 
the axial direction (the axis of the plasma jet, z) was 

plasma-arc 
FIG. I. Keyhole PAW on flat metal plate. 

assumed negligibly small relative to the temperature 
variation in the radial direction and the problem was 
treated using a fin like formulation in the radial direc- 
tion. This assumption is justified by the small Blot 
number based on the metal plate thickness. 

(2) The liquid flow in the molten pool is assumed 
two-dimensional in the radial and angular directions. 
This assumption was also made in the other studies 
mentioned in the Introduction. Although the accuracy 
of this assumption is questionable and has been 
employed in this work primarily to facilitate a first 
solution to the problem it can be justified to some 
extent from experimental observation. Experiments 
show that in the liquid puddle during welding, in the 
axial direction (the axis of the plasma jet), the shear 
forces caused by the plasma jet and the gravity which 
tend to detach the liquid droplet are counteracted only 
by the rather weak surface tension forces. Conse- 
quently the forces in the axial direction must be of the 
order of magnitude of the surface tension forces and 
therefore very small. 

(3) Experimental results show that the keyhole that 
forms during plasma welding is circular [5, 6] prob- 
ably because of the effect of surface tension. There- 
fore, in this study the shape of the keyhole will bc 
assumed circular. 

(4) The temperature at the keyhole surface is 
assumed to be the boiling temperature of the metal. 
This assumption implies some metal vaporization at 
the plasm~liquid interface which is neglected in this 
work. 

(5) The effective heat transfer coefficient used in 
calculating the heat loss from the plate surfaces to the 
surroundings is assumed constant. 

(6) The molten liquid is assumed to be Newtonian 
and incompressible. 

(7) Homogeneous, isotropic but temperature- 
dependent properties are assumed in the solid region. 

(8) Homogeneous, isotropic and temperature- 
independent properties are assumed in the liquid 
region. 

With the above assumptions, the fluid flow and the 
heat transfer in the liquid pool can be modelled by the 
following two-dimensional, quasi-stationary equa- 
tions in a frame of reference moving with the plasma 
jet : 

continuity 

Ou Ov 
3 x + ~ y = O ;  (1) 

momentum in the x-direction 

Ou ~u ~ --P+ 2Pt?x 

. ay+~x =0:  (2) 

momentum in the y-direction 
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FIG. 2. Coordinate systems defined in molten liquid region. 

a~ au a F /av a&-I 

- p + 2 p  = 0 ;  (3) 

energy 

&o ,h 
PC'~f-  Uxx\ ax/ 

a (k,~r,) 2h 
~y\  8yJ +-Tl=O;z (4) 

where x and y are the axes of the coordinate system 
defined in Fig. 2 ; u and v are the liquid velocity com- 
ponents in the x- and y-directions; T~ is defined as 
the temperature difference between the liquid and the 
environment which is assumed at a constant value 
T~ ; h is the effective heat transfer coefficient associ- 
ated with the surface heat loss; z is the metal plate 
thickness ; p is the pressure in the liquid region. 

The heat transfer in the solid region is governed by 
the following energy equation : 

pc'U o~x - Ox \ ax J #y \ ay J + T T~ = O 

(5) 
where T~ is the temperature difference between the 
solid temperature and T~. 

At the centerline (welding path) of the workpiece, 
the tangential shear stress, the velocity component, 
and the temperature gradient in the y-direction are all 
zero due to the symmetry condition. Therefore 

gu ~3T1 OT~ 
c~y=0; v = 0 ;  ~f-y = 0 ;  8y = 0 ;  a t y = 0 .  

(6) 
Assuming an infinite plate in the x- and y-direction, 

far away from the plasma arc and the molten liquid 
pool, the solid material will remain at the environ- 
mental temperature. Thus 

T s = 0 ;  asy--*oo or x~___ov. (7) 

Because the liquid metal cannot flow across the 
keyhole surface (6f~ ~ in Fig. 2), its velocity component 
in the local normal direction is zero 

vr=ucosO+vsinO=O; a t r = ( x 2 + y 2 )  I/2=a 

(8) 

where r and 0 are the polar coordinates defined in Fig. 
2 ; a is the known keyhole radius. 

The tangential shear stress of the liquid at the key- 
hole surface is also zero because the plasma arc cannot 
resist the sideflow of the liquid metal. This boundary 
condition can be simplified to take the form 

c~rkr ] = 0; a t r  = a. (9) 

According to the initial assumption, the liquid tem- 
perature at the keyhole surface is the boiling tem- 
perature. Thus 

T~=Th-T~;  a t r = a  (10) 

where T~ is the constant environment temperature. 
On the solid-liquid interface (fir2 2 in Fig. 2), the no- 

slip condition and the local energy balance lead to the 
following equations : 

u =  U; on6~2 (11) 

v = 0 ;  on 6f~2 (12) 

T, = T~ = T m -  T~ ; on 6n2 (13) 

_k ?T ,=_k ,  Or' (On On + pUhslcosO~; on6D 2 (14) 

where Tm is the melting temperature of the material ; 
hs~ is the heat of fusion ; 0n is the angle between the x- 
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axis and the local normal to the solid-liquid interface. 
Equations (1)-(5) with boundary conditions (6)- 

(14) form a complete set for the determination of 
the velocity and temperature fields in the liquid and 
temperature field in the solid. Because the workpiece 
is symmetric with respect to the centerline, only one 
half of the x-y plane is considered in the calculations. 

Finite element formulations 
In the present numerical study the reduction of the 

continuum problem to a discrete form is accomplished 
by employing a Galerkin finite element method [27- 
29]. This approach divides the geometric domain of 
interest into a number of isoparametric elements with 
specified nodes. Within each element the coordinates 
and the dependent variables, u, v, P, T, at any location 
are expressed in terms of pre-determined interpolation 
functions and the variables at those nodal points. 
These relationships can be written as follows : 

N N 

x =  Z dpixi, y =  Z (#iyl 
i ~ l  i - - I  

u =  E 4~,ui, ,~= 4~u, 
i - -1  i = l  

N N 

e =  E 0,ei, r =  E +it, 
i = 1  i = l  

(15) 

where ~bi and I]/i a r e  the interpolation functions; xi 
and Yi are the coordinates at the ith node; ui, vi, Pi 
and Ti are the unknown dependent variables at the 
ith node ; N nodes are assumed to be associated with 
each element. By introducing the above approxi- 
mations into equations (1)-(5) and applying the 
Galerkin weighted residual procedure to the resultant 
equations, a set of matrix equations, which represent 
the discrete form of the continuum equations, can be 
derived for each element : 

continuity 

BTu+CTv = O; (16) 

x-momentum 

A u + B P + D u + G v  = Fx; (17) 

y-momentum 

A v + C P + G T u + M V  = Fy; (18) 

energy in liquid 

energy in solid 

NTI = Q~; (19) 

HT~ = Qs ; (20) 

where u and v are vectors of the velocities at nodal 
points ; P is the vector of nodal pressure ; T~ and Ts 
are vectors of nodal temperatures in liquid and solid 
region; B and C matrices represent the incom- 
pressibility constraint ; A matrix represents the liquid 
inertia term in the momentum equation ; D, G and M 
matrices represent the diffusion of momentum ; N and 

H matrices represent the combined effects of both 
convection and diffusion of the thermal energy; F~ 
and F~ are vectors of surface forces applied at the 
element boundary ; Q~ and Qs are vectors of surface 
heat flux across the element boundary. A detailed 
finite element formulation of these matrices is listed 
in the Appendix. 

Equations (15)-(20) are derived for a single finite 
element. By assembling the matrix equations over all 
the elements, a system of matrix equations which 
govern the fluid flow and heat transfer in the work- 
piece is obtained. The nodal point unknowns in the 
vectors of u, v, P, T~ and Ts can then be solved after 
introducing the boundary conditions, equations (6) 
(14), into these matrix equations. 

The type of element used in this work is the nine 
node quadrilateral element with 31 degrees of 
freedom. The element boundary shape, velocity and 
temperature fields within each element are approxi- 
mated using quadratic functions while the interpo- 
lation function for pressure is linear and based on 
the value of the pressure at the corner nodes. This 
careful choice of the degrees of interpolation 
functions, i.e. the interpolation function for pressure 
is one degree less than that for velocity, was made 
for the consistency of the approximation [28], and is 
necessary to assure good results. 

Solution procedure 
A straightforward solution of the finite element 

equations is not possible because of the unknown 
location of the solid-liquid interface. In this paper we 
have developed a Newton-Raphson iteration pro- 
cedure to accurately identify the solid liquid interface. 
This procedure is essentially a prediction-correction 
method which locates the solid-liquid interface pos- 
ition such that the interfaeial thermal conditions, 
equations (13) and (14), can be both satisfied. A 
description of the iterative procedure follows. 

The iterative procedure is started by setting up a 
group of nodes on a guessed interface location. These 
nodes are spaced equally along the angular, 0, direc- 
tion while the radial distance, ri (i = 1,2 . . . . .  m ; m is 
the total number of nodes on the guessed interface 
location) from the coordinate origin to the nodes is 
guessed in the first iteration and then determined 
through the Newton-Raphson iterative procedure. 

First, the flow and temperature fields are deter- 
mined in the liquid region from the solution of equa- 
tions (16)-(19) with boundary condition (13). The 
heat flux on the interface, in the liquid region, is 
obtained as part of the solution. This heat flux is 
introduced into equation (14) which then serves as a 
boundary condition for the solution of the energy 
equation in the solid region, equation (20). Since the 
interface location used in this analysis is just a guess, 
the temperature on the solid-liquid interface obtained 
from this calculation may be different from the melt- 
ing temperature, i.e. boundary condition (13) is not 
satisfied in the solid region. 
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The difference between the temperature calculated 
on each node, i, on the interface and the melting 
temperature is ei where 

ei (r t , r2  . . . . .  rm) = Ts.i-- Tm; i =  1,2 . . . . .  m. (21) 

The objective of  the Newton -Raphson  iterative pro- 
cedure then becomes the minimization of  ei's by pro- 
perly adjusting the r/s .  Let E and R be the vectors 
of  nodal surface temperature difference and interface 
nodal distance. The following formula is used to 
update the prediction on R using the values of  E 
resulting from the previous prediction 

Rk+L = R k _ [ j k ] -  ~E ~ (22)  

where the superscript k stands for the iteration 
number. The element at the ith row, j t h  column of 
the Jacobian matrix, Jikj, is given by 

de~ 
J~'J - c ~  (23) 

or  in a numerical form 

e~-e~  ' (24) 

r / -  rJ 

In the solution, during each iteration, a new finite 
element mesh is automatically generated based on the 
updated location of  the solid-liquid interface. Then 
the temperatures and fluid flow are calculated and a 
new vector E generated. This iteration procedure is 
repeated until the following convergence criterion is 
met : 

( E ~  E) ' /2  = 0.002Tm. (25) 

RESULTS A N D  DISCUSSION 

The numerical method was used to investigate the 
heat transfer and fluid flow phenomena during a key- 
hole P A W  process on a 12.7 mm thick stainless steel 
plate. This study assumed a constant heat transfer 
coefficient of  20 W m 2 K-1 between the workpiece 
surface and the surroundings, which is at a constant 
temperature of  30°C. Based on these values and the 
stainless steel properties (Table 1), the Biot number 
associated with the heat conduction in the plate is 
found to be less than 0.01. Therefore, the two-dimen- 
sional heat transfer model  which assumes uniform 
temperature across the plate thickness is reasonable. 
The analysis was performed for a keyhole with a 
radius of  2 mm, which is typical of  the PAW process 
[13]. It is expected that the temperature gradients near 
the keyhole are larger than those far away from the 
keyhole. Thus, a finite element mesh of  expanding 
spacing in the radial direction, with finer spacing near 
the keyhole and coarser spacing far away from it, was 
used to reduce computer  time. A mesh of  360 nodes 

Table 1. Thermal properties of AISI 304 stainless steel 

Thermal conductivity Heat capacity 
Temperature (W m ~ "C ~ ) (J kg - ~ °C- t) 

0 14.3 460.5 
20 14.7 473 
27 14.9 477.2 
77 15.8 498.1 

127 16.6 514.9 
177 17.5 527.4 
227 18.3 540.0 
277 19.1 548.8 
327 19.8 556.7 
377 20.5 565.1 
427 21.2 569.3 
477 21.9 577.7 
527 22.6 581.9 
577 23.3 586.0 
627 24.0 594.4 
677 24.7 602.8 
727 25.7 611.2 
827 26.7 623.7 
927 28.0 640.5 

1027 29.3 653.0 
1127 30.5 665.3 
1227 31.7 682.3 
1327 32.7 694.9 
1367 33.3 707.4 
1427 31.5 812.1 
2807 31.5 812.1 

Density, 7200 kg m 3; viscosity, 0.00642 kg m ~ s ~; 
melting temperature, 1427c'C ; boiling temperature, 2807~'C ; 
heat of fusion, 265.2 kJ kg ~. 

was used for the solution of  the problem. 
Figures 3 and 4 show the velocity and temperature 

fields calculated in the liquid region for constant weld- 
ing speeds of  0.5 and 2.5 mm s ~. These plots clearly 
show the flow pattern of  the molten liquid in the pool. 
Since the keyhole moves, the weld pool shape and the 
temperature isotherms are not  circular as in the case 
of  a stationary heat source. The elliptical nature of  the 
pool shape is more prominent  for the higher welding 
speed case. 

Figures 5 and 6 illustrate the temperature dis- 
tributions in the solid region at welding speeds of  0.5 
and 2.5 m m s  ~. Results show that the isotherms in 
front of  the keyhole are closer than those behind the 
keyhole because of  the convective effect of  the welding 
torch movement.  It is also important  to observe that 
the width of  the heat affected zone in the workpiece 
is reduced as the welding speed increases. 

The temporal variations of  the temperature at a 
fixed point on the welding path (y = 0) is shown in 
Fig. 7. Results reveal that, for the welding process at 
a higher speed, material is heated up and cools down 
at a faster rate. These results are useful in under- 
standing the recrystallization process following weld- 
ing and the fractures caused by thermal stresses. 
Experiments done in our laboratory clearly indicate 
that higher welding rates in plasma welding results in 
fracture of  the weld. 

Figure 8 depicts the sizes of  the weld pool as a 
function of  welding speed. Five welding speeds rang- 
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F1G. 3. Velocity and temperature distributions in the liquid region, welding speed = 0.5 mm s ]. 
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FIG. 4. Velocity and temperature distributions in the liquid region, welding speed = 2.5 mm s ~. 

ing from 0.5 to 2.5 mm s ~ were considered. It can be 
seen, that the weld pool at a higher speed is smaller. 
This implies that a narrower fusion zone may be 
obtained as the welding speed increases. Figure 9 pre- 
sents a correlation between the width of  the fusion 
zone and the welding speed. These predictions are 
consistent with the experimental results in our 
laboratory which will be published in a forthcoming 
publication. 

Also shown in Fig. l0 is the minimal power require- 
ment for welding per unit plate thickness as a function 
of  welding speed. This power requirement is the heat 
needed by the workpiece to maintain a constant speed 

welding process. As revealed in this figure, this power 
increases, almost linearly, with the welding speeds 
discussed here. This is caused by the fact that more 
solid material, per unit time, will be heated up during 
a process at a higher speed. This data also represents, 
to the approximations made in this study, the 
maximum heat that the workpiece can absorb during 
the welding process. Any additional heat which is 
transferred from the plasma arc to the workpiece 
would be used to vaporize the metal. For  the case of a 
welding speed of  2.5 mm s-] ,  this power requirement 
is about  2.1 kW. The power input used during a typical 
P A W  process on stainless steel plates was found 
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FIG. 10. Solid-liquid interfaces calculated at different keyhole sizes, welding speed = 1.5 mm s ~. 

experimentally to be in the range of  4-10 kW [24]. By 
assuming a typical heat transfer efficiency of  65% for 
the process [11], the power required for P A W  of a 
12.7 mm plate with a keyhole of  2 mm will vary, 
according to Fig. 9, between 2.6 and 6.5 kW. This 
result compares favorably with the experimental 
results and may show that some metal vaporization 
would occur during the P A W  process. 

The effect of  keyhole size on the weld pool size is 
shown in Fig. 10. Three keyhole radii of  1, 2 and 3 
mm were considered in this study. This plot shows 
that the weld pool size increases with the keyhole 

radius. Similarly, the required thermal energy 
increases with the keyhole radius (see Fig. 9). This 
result suggests a method to control PAW processes 
through the control of  the plasma jet diameter. 

To determine the effects of  the thickness of  the 
plate on the solution, Fig. l 1 shows the solid-liquid 
interface evaluated at Blot numbers (hZ/k~) of 0.008 
and 0.08. The welding speed and the keyhole radius 
assumed in these calculations were 1.5 mm s ~ and 2 
ram, respectively. It is evident from the small change 
in the weld pool size that the welding process will not 
be affected by the thickness of  the plate if the Blot 
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14 

n u m b e r  is small, and  when the b o u n d a r y  condi t ions  
on the p lasma- l iqu id  interface do not  vary in the axial 
direction. 

CONCLUSION 

A new finite e lement  numerical  me thod  was 
developed to study the fluid flow and  the heat  t ransfer  
processes dur ing keyhole P A W  of metal  plates. This 
model  employs a N e w t o n - R a p h s o n  i terat ion pro- 
cedure, to accurately identify the sol id- l iquid interface 
location.  A parametr ic  study of  the welding of  an 
A1SI 304 stainless steel plate indicates the impor tance  
of  the welding speed and  keyhole size on  the widths  
of  bo th  the fusion zone and  the heat  affected zone and  
on the energy required for welding. A higher  welding 
speed will increase the energy requi rement  for welding 
and  decrease the width of  the heat  affected zone, while 
a large keyhole size will increase both,  the width of  
the heat  affected zone and  the energy requirement .  
The results have been found to be quali tat ively con- 
sistent with the exper imental  results in the l i terature.  
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APPENDIX  

Using the Galerkin finite element procedure, the field 
equations (4-21) through (5) can be transformed into the 
following elemental matrix equations : 

BTu+CTv = 0 (A1) 

Au + Bp + Du + Gv = F~ (A2) 

Av + Cp + GVu + My = F~ (A3) 

NTI = QI (A4) 

HT~ = Q~. (A5) 

The elements at the ith row, j th  column of each of the 
coefficient matrices above are listed as follows : 

0 ( / ) j  N 

ff  , (20+, 0+, 0+,0 j  jjo, \ Ox dxd>' 

(( (o¢, o¢, o¢, oO,~ 
M,, = j j o , ,  ko,< + 2 oi- oy ) dxd  

8¢j N 

+ i dJkvk dxdy + kl Ox ~x 
k = l  I 

+kl Oy + 2hz ~iOJ dxdy 

F~,= f i .  4~ [-/ Ou\ /Ou O,,~ , Lt + o,<)"'J 

L{ ,v ( ,. 
F,,,.. = ', 4)i Y (~yOU +~)n<+cx/ --p+2,u @n.,)] dF 

Qu=-f~.10'( -kl0TI)dF0nj 
Q,., = - f~a ~b, (- k, ~#T~) dF. (A6) 

ETUDE DU TRANSFERT THERMIQUE BIDIMENSIONNEL POUR LE MECANISME 
DE SOUDAGE PAR PLASMA D'ARC 

R6sum6--On pr6sente un mod61e bidimensionnel, quasi-stationnaire pour &udier num6riquement par la 
m&hode des 616ments finis l'6coulement fluide et le transfert de chaleur qui se produisent pendant le 
soudage fi vitesse constante de plaques m&alliques fi l'aide d'un plasma d'arc. On dbveloppe une proc6dure 
it6rative de Newton-Raphson pour identifier avec pr6cision la position de l'interface liquide-solide. Les 
r6sultats montrent que la m6thode peut 6tre utilis6e pour pr6dire la forme de la zone fondue en fonction 
des param6tres de soudage. Les 6tendues de la zone fondue et de la zone chaude diminuent quand la vitesse 
de soudage augmentent tandis que la puissance n6cessaire au soudage augmente lorsque la vitesse de 

soudage croTt. 
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UNTERSUCHUNG DES ZWEIDIMENSIONALEN W,~RMETRANSPORTS BEIM 
PLASMA-LICHTBOGENSCHWEISSEN 

Zusammenfassung--Die Abhandlung beschreibt ein zweidimensionales quasi-station/ires Finite-Element- 
Modell zur Untersuchung von Str6mung und W/irmeiibertragung beim Plasma-Lichtbogen-SchweiBen 
an Metallplatten bei konstanter Vorschub-Geschwindigkeit. Ein Newton-Raphson-Iterationsverfahren 
wurde entwickelt, um die Lage der Schmelzfront w/ihrend des SchweiBvorgangs m6glichst exakt zu 
bestimmen. Die Finite-Element-Methode wurde dazu verwendet, den typischen Durchschweil~prozel3 an 
einer Platte aus rostfreiem Stahl (AISI 304) zu untersuchen. Die Ergebnisse zeigen, dab die Methode zur 
Bestimmung der Form des Schmelzgebiets als Funktion der Schmelzparameter angewandt werden kann. 
Die Breite der Schmelzzone und das erhitzte Gebiet werden bei steigender Vorschubgeschwindigkeit kleiner, 

w/ihrend die notwendige elektrische Leistung ansteigt. 

H3YqEHHE ,~BYMEPHOFO TEHYIOIIEPEHOCA B HPOI.IECCE HYIA3MEHHOITI 
~YFOBOITI CBAPKH THHA <<.qACTOqKHH XBOCT, 

AHlIOTail~li--l~pe~CTaBJIeHa ~ByMepHa$1 KBa3HCTaI~HOHapHa$1 qHCYleHHa$1 MO~eYIb KOHeqHbIX 3JIeMeHTOB 
~'151 HCC3Ie~OBaHH~I TeqeHH$[ )KH~KOCTH H ~IBHeHH~ TeiuionepeHoca,  KOTOp~de HMeIOT MeCTO B cayqae 
HHa3MeHHOH ~yFOBOH cBapKH MffraJIJIHqeCKHX IUIaCTHH THHa ((JIaCTOqKHH XBOCT)) C IIOCTO~IHHOH CKOpOC- 

TbIO. C He,rlblO TOqHOFO OFlpe,~eJleHH~l HpH c e a p r e  FpBHHIIJ)I p a ~ e ~ a  Taep/ioe TeILIIO--X~IKOCTb B 3TOil 
Mo~e~H 6bL~ ycoeepmeHCTBOBaH HTepaIL)IOHHMfi MffrO~ Hb~OTOHa--Pat~coHa. MeTO~ KOHeqHI,IX 3YIeMeH- 
TOB HpHMOHflHC$1 ,RY[51 H3yqeHHfl THHHtIHOFO H p o H ~ a  cBapKH HYlaCTHHbI THFIa ((JIaCTOqKHH XBOCT)) H3 

Hepxaaelome~ cTa~H AISI 304. Pe3yYlbTaTbI nOKa3bIBaIOT, tITO ~[aHHIdfi MeTO.~ MOXeT 6bITh HCnOYib30- 
BaH RYla pacqeTa OOpMbl csapoqaofi BaHHla B (~yHKHHH napaMeTpoe cBapgH H tITO mHpHHa gag 3OHbl 
HJIaB.~eHH~I, TaK H 3OHbI TepMHqCCI~OrO B~H~IHH~I yMeHbmaeTc~l c pOCTOM cKopOCTH cBapKH n TO BpeM~l 

KaK noTpe6Has  MOmHOCTb yae.rlHtlHBaeTc~l. 


